pytorch复习笔记--loss.backward()、optimizer.step()和optimizer.zero_grad()的用法
创始人
2024-03-04 06:39:35
0

目录

1--loss.backward()的用法

2--optimizer.step()的用法

3--optimizer.zero_grad()的用法

4--举例说明

5--参考


1--loss.backward()的用法

作用:将损失loss向输入测进行反向传播;这一步会计算所有变量x的梯度值 \small \frac{d}{dx}loss,并将其累积为\small x*grad 进行备用,即 \small x*grad=(x*grad)_{pre}+\frac{d}{dx}loss ,公式中的 \small (x*grad)_{pre} 指的是上一个epoch累积的梯度。

2--optimizer.step()的用法

作用:利用优化器对参数x进行更新,以随机梯度下降SGD为例,更新的公式为:\small x = x - lr*(x*grad),lr 表示学习率 learning rate,减号表示沿着梯度的反方向进行更新;

3--optimizer.zero_grad()的用法

作用:清除优化器关于所有参数x的累计梯度值 \small x*grad,一般在loss.backward()前使用,即清除 \small (x*grad)_{pre}

4--举例说明

① 展示 loss.backward() 和 optimizer.step() 的用法:

import torch# 初始化参数值x
x = torch.tensor([1., 2.], requires_grad=True)# 模拟网络运算,计算输出值y
y = 100*x# 定义损失
loss = y.sum() print("x:", x)
print("y:", y)
print("loss:", loss)print("反向传播前, 参数的梯度为: ", x.grad)
# 进行反向传播
loss.backward()  # 计算梯度grad, 更新 x*grad    
print("反向传播后, 参数的梯度为: ", x.grad)# 定义优化器
optim = torch.optim.SGD([x], lr = 0.001) # SGD, lr = 0.001print("更新参数前, x为: ", x) 
optim.step()  # 更新x
print("更新参数后, x为: ", x)

② 展示不使用 optimizer.zero_grad() 的梯度:

import torch# 初始化参数值x
x = torch.tensor([1., 2.], requires_grad=True)# 模拟网络运算,计算输出值y
y = 100*x# 定义损失
loss = y.sum() print("x:", x)
print("y:", y)
print("loss:", loss)print("反向传播前, 参数的梯度为: ", x.grad)
# 进行反向传播
loss.backward()  # 计算梯度grad, 更新 x*grad    
print("反向传播后, 参数的梯度为: ", x.grad)# 定义优化器
optim = torch.optim.SGD([x], lr = 0.001) # SGD, lr = 0.001print("更新参数前, x为: ", x) 
optim.step()  # 更新x
print("更新参数后, x为: ", x)# 再进行一次网络运算
y = 100*x# 定义损失
loss = y.sum()# 不进行optimizer.zero_grad()
loss.backward()  # 计算梯度grad, 更新 x*grad 
print("不进行optimizer.zero_grad(), 参数的梯度为: ", x.grad)

③ 展示使用 optimizer.zero_grad() 的梯度:

import torch# 初始化参数值x
x = torch.tensor([1., 2.], requires_grad=True)# 模拟网络运算,计算输出值y
y = 100*x# 定义损失
loss = y.sum() print("x:", x)
print("y:", y)
print("loss:", loss)print("反向传播前, 参数的梯度为: ", x.grad)
# 进行反向传播
loss.backward()  # 计算梯度grad, 更新 x*grad    
print("反向传播后, 参数的梯度为: ", x.grad)# 定义优化器
optim = torch.optim.SGD([x], lr = 0.001) # SGD, lr = 0.001print("更新参数前, x为: ", x) 
optim.step()  # 更新x
print("更新参数后, x为: ", x)# 再进行一次网络运算
y = 100*x# 定义损失
loss = y.sum()# 进行optimizer.zero_grad()
optim.zero_grad()
loss.backward()  # 计算梯度grad, 更新 x*grad 
print("进行optimizer.zero_grad(), 参数的梯度为: ", x.grad)

通过②和③的对比,能看出 optimizer.zero_grad() 的作用是清除之前累积的梯度值。

5--参考

参考1

相关内容

热门资讯

美国2年期国债收益率上涨15个... 原标题:美国2年期国债收益率上涨15个基点 美国2年期国债收益率上涨15个基...
汽车油箱结构是什么(汽车油箱结... 本篇文章极速百科给大家谈谈汽车油箱结构是什么,以及汽车油箱结构原理图解对应的知识点,希望对各位有所帮...
嵌入式 ADC使用手册完整版 ... 嵌入式 ADC使用手册完整版 (188977万字)💜&#...
重大消息战皇大厅开挂是真的吗... 您好:战皇大厅这款游戏可以开挂,确实是有挂的,需要了解加客服微信【8435338】很多玩家在这款游戏...
盘点十款牵手跑胡子为什么一直... 您好:牵手跑胡子这款游戏可以开挂,确实是有挂的,需要了解加客服微信【8435338】很多玩家在这款游...
senator香烟多少一盒(s... 今天给各位分享senator香烟多少一盒的知识,其中也会对sevebstars香烟进行解释,如果能碰...
终于懂了新荣耀斗牛真的有挂吗... 您好:新荣耀斗牛这款游戏可以开挂,确实是有挂的,需要了解加客服微信8435338】很多玩家在这款游戏...
盘点十款明星麻将到底有没有挂... 您好:明星麻将这款游戏可以开挂,确实是有挂的,需要了解加客服微信【5848499】很多玩家在这款游戏...
总结文章“新道游棋牌有透视挂吗... 您好:新道游棋牌这款游戏可以开挂,确实是有挂的,需要了解加客服微信【7682267】很多玩家在这款游...
终于懂了手机麻将到底有没有挂... 您好:手机麻将这款游戏可以开挂,确实是有挂的,需要了解加客服微信【8435338】很多玩家在这款游戏...